Visual awareness correlates with layer-specific activity in primary visual cortex
نویسندگان
چکیده
منابع مشابه
Primary visual cortex and visual awareness.
The primary visual cortex (V1) is probably the best characterized area of primate cortex, but whether this region contributes directly to conscious visual experience is controversial. Early neurophysiological and neuroimaging studies found that visual awareness was best correlated with neural activity in extrastriate visual areas, but recent studies have found similarly powerful effects in V1. ...
متن کاملThe role of primary visual cortex (V1) in visual awareness
In the search for the neural correlate of visual awareness, much controversy exists about the role of primary visual cortex. Here, the neurophysiological data from V1 recordings in awake monkeys are examined in light of two general classes of models of visual awareness. In the first model type, visual awareness is seen as being mediated either by a particular set of areas or pathways, or altern...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملPrimary visual cortex: awareness and blindsight.
The primary visual cortex (V1) is the principal telencephalic recipient of visual input in humans and monkeys. It is unique among cortical areas in that its destruction results in chronic blindness. However, certain patients with V1 damage, though lacking visual awareness, exhibit visually guided behavior: blindsight. This phenomenon, together with evidence from electrophysiological, neuroimagi...
متن کاملStimulus-specific delay activity in human primary visual cortex.
Working memory (WM) involves maintaining information in an on-line state. One emerging view is that information in WM is maintained via sensory recruitment, such that information is stored via sustained activity in the sensory areas that encode the to-be-remembered information. Using functional magnetic resonance imaging, we observed that key sensory regions such as primary visual cortex (V1) s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2010
ISSN: 1534-7362
DOI: 10.1167/9.8.261